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It is proposed that a series designed to explore the potential of a "lead" should have the following characteristics: 
(1) the analogues should be synthetically feasible, (2) the series should contain enough variation in the properties 
which may influence potency, (3) these properties should be varied independently of each other, and (4) the series 
should be the minimum acceptable size, i.e., each analogue should contribute unique information. Point 2 is evaluated 
by a consideration of the definition of R2. As a rule of thumb, the standard deviation of a property should usually 
be >1.0. Point 3 is evaluated by analyzing the correlation matrix of properties. If it has fewer significant eigenvalues 
than properties, then factor analysis reveals which properties are artificially correlated. Point 4 is evaluated by 
distance between analogues in property space. In order to be certain that the proposed molecular descriptors are 
independent, a large data set of possible substituents was analyzed. Factor analysis of the physicochemical properties 
of 78 aromatic substituents revealed that x, S, P, and MR are orthogonal descriptors. The proposed criteria have 
been applied to series designed by cluster analysis, multidimensional nonlinear mapping, Topliss batch methods, 
and to two Abbott series. The other mathematical methods of series design suffer from their lack of attention to 
all four points simultaneously. 

If one accepts the premise that the biological properties 
of organic molecules are a direct consequence of their 
chemical and physical properties, then it becomes possible 
to propose strategies to make the process of drug discovery 
more efficient. This report suggests a method of evaluating 
the suitability of a set of analogues which have been 
proposed to follow up a lead. Synthesis and testing of this 
set of analogues will adequately explore the effect of 
variations in those properties used in its design. Hence, 
if it is found that this series does not possess or suggest 
analogues of sufficient potency, one can confidently decide 
not to explore further variations of these properties. Thus, 
the method is useful in both initial series design and in 

the decision to terminate further synthesis. 
The proposed criteria for a suitable set are as follows: 

(1) It will be the smallest size consistent with the objectives 
of the synthetic program. (2) Those chemical and physical 
properties which are hypothesized to determine biological 
potency or profile will be varied widely enough that it is 
theoretically possible to find a useful relationship. (3) The 
series will exhibit variation in these molecular properties 
in such a way that the variation of each property is in­
dependent of the variation in all other properties. The two 
latter characteristics assure that the data space has been 
adequately explored. (4) It will contain only analogues 
which are not too difficult to synthesize. This point will 
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be established by the synthetic chemists of the team. 
Various strategies to produce a suitable set of planned 

analogues have been advanced1"3 but, as will be shown 
below, each has serious shortcomings. We suggest that 
once a series has been proposed, it can be evaluated and 
perhaps improved by the use of standard statistical 
methods of factor and cluster analysis. 

The basic steps of this method of series design and 
improvement are as follows: (1) The key decisions dis­
cussed below are made. (2) The initial series is proposed. 
This initial series may be chosen from published1 or in­
ternally generated clusters and/or from considerations of 
synthetic feasibility plus intuition. (3) The series is 
evaluated by factor and cluster analysis. Factor analysis 
programs provide measures of relatedness or independence 
of each property. Although the most common use of factor 
analysis (or its close relative, principal component analysis) 
in chemistry has been to assess the relatedness of prop­
erties, the method is equally appropriate for the analysis 
of independence of properties. It is explained in the 
Appendix. Cluster analysis provides measures of the 
uniqueness of each compound. A discussion of these 
measures of suitability as well as examples of evaluated 
series follow. (4) Depending on the outcome of the 
evaluation, as many as are required of propose-evaluate 
cycles are done until all four criteria have been satisfied. 

Steps in the Evaluation of a Series 
Key Initial Decisions. (1) Choice of Physical 

Properties to be Used to Describe Substituent Ef­
fects. A critical decision in the evaluation or design of a 
series is the choice of structural properties on which the 
optimization is to be accomplished. For example, one 
could consider indicator variables which denote the 
presence or absence of certain specific substructures or 
pharmacophores, conformational properties such as dis­
tances between key atoms, and/ or physical and chemical 
properties of the molecules as a whole or of a substructural 
feature of the molecule. The large number of possible 
descriptors presents a problem. On the one hand, only if 
all molecular properties which influence biological activity 
are considered will the lead be adequately explored. On 
the other hand, as the number of molecular descriptors is 
increased, so is the number of analogues necessary to 
examine them. 

Because of their known utility, and in spite of their 
obvious limitations, the series considered in this report are 
described almost exclusively by those properties tradi­
tionally considered in the linear free-energy analysis of 
structure-activity relationships. These properties are 
divided into the hydrophobic, electronic, and steric effects 
of the variable substituent on the (constant) parent 
compound.5 If such substituent effects are truly inde­
pendent in the series, then each represents a different 
dimension of physical property space; that is, each property 
is totally uncorrected (i.e., orthogonal) with every other 
property. This section deals with the selection of a set of 
orthogonal physicochemical parameters. 

(a) Hydrophobic Substituent Effects. Hydropho-
bicity is parameterized in this report by the substituent 
effect on the logarithm of the octanol-water partition 
coefficient, the Hansch IT value6 or by the log P of the total 
molecule. 

(b) Electronic Substituent Effects. The electronic 
influences of substituents have been commonly assumed 
to be attributable to their separate orthogonal induc­
tive-field and resonance effects. Various methods of 
calculating these two effects have been proposed. From 
the standpoint of maximizing the number of substituents 
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Table I. Rotated Factor Pattern of the 
Electronic Variables 

factor 

triable 
am 
°P 
7 
fl 
S 
P 

1 

0.57 
0.86 
0.33 
0.99 
0 
0.99 

2 

0.82 
0.52 
0.94 
0 
0.99 
0 

for which values would be available, it is preferable to 
consider those parameters which can be calculated from 
the common Hammett m and p values. On this basis, the 
Swain-Lupton 5? and 31 values7 and the Unger-Swain S 
and P values8 are attractive. We used factor analysis to 
analyze these two pairs of inductive-field and resonance 
values for independence between the two electronic effects 
and to possibly make a descision as to which pair is more 
orthogonal. This analysis was performed on the data set 
of substituents6 for which both <rm and av values are 
available, 125 in all. The derived parameters were cal­
culated from the following equations derived from the 
original references: 

3 = 1.369ffm - 0.373<7p - 0.009 

ft = ffp - 0.9217 

P = 4.60(jp - 3.81crm + 0.085 

S = (ffm - 0.178P + 0.002)/0.419 

The correlation matrix of the data (o-m, <rp, J, ft, S, and 
P) matrix has only two significant eigenvalues, 4.22 and 
1.78. This confirms the chemical postulate that there are 
two and only two electronic substituent effects, inductive 
field and resonance. 

The rotated factor pattern is shown in Table I. The 
results clearly show the orthogonality of S and P and the 
less satisfactory performance of J and ft. 

(c) Steric Substituent Effects. The selection of 
parameters for the steric effects of substituents is a very 
complex problem and many different choices have been 
suggested. For drug analogue studies, the most commonly 
used steric parameters are the Taft Ea value, the Ver-
loop-Tipker Sterimol parameters, and molar refractivity 
or a related value. The traditional steric parameter Es is 
an experimental measure. It is based on the presumed 
steric component of the effect of substituents on the rate 
of ester hydrolysis.9 The Sterimol parameter L is the 
calculated van der Waal's length (of the presumed min­
imum energy conformation) of the substituent along the 
line of the bond between the parent and the substituent. 
Bx is the smallest dimension perpendicular to L, and B4 
is the largest dimension perpendicular to L.10 Finally, the 
molar refractivity of a substituent is an additive consti­
tutive property which denotes the effect of that substituent 
on the refractive index of the compound. It is also the 
parameter which measures the dispersion bonding po­
tential of a substituent.6 

How many steric parameters are necessary? What is the 
relationship between the various parameters? Again, 
factor analysis was used to investigate this problem. There 
are 34 substituents for which the Sterimol parameters, EB 
values, and molar refractivity are available. The eigen­
values of the correlation matrix of this data set are 3.14, 
1.19, 0.38, 0.20, and 0.08. 

The rotated factor pattern of this data is shown in Table 
II. The previously noted10 relationship between £8 and 
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Table II. Rotated Factor Pattern of Steric Variables 

factor 

var 

MR 
£ s 
L 
S i 
B, 

1 

0.80 
-0 .50 

0.41 
0 
0.92 

2 

0.35 
-0 .81 

0 
0.97 
0 

3 

0.38 
0 
0.90 
0 
0.33 

Table III. Rotated Factor Pattern of Hydrophobic and 
Steric Parameters 

factor 

Martin, Panas 

var 
•n 

MR 
L 
B, 
B4 

1 

0 
0.32 
0.92 
0 
0.23 

Z 

0.99 
0 
0 
0 
0 

a 
0 
0.27 
0 
0.98 
0 

4 

0 
0.29 
0.24 
0 
0.94 

b 

0 
-0 .86 
-0 .26 

0 
-0 .23 

Table IV. Means, Standard Deviations, Squared Multiple 
Correlations, and Rotated Factor Pattern of Physical 
Properties in the Total Data Set of N = 78 

sc* factor 
mult 

var mean SD correlat 1 2 3 4 

n 0.21 1.11 0.14 0 0 0 0.98 
MR 18.06 12.04 0.07 0 0 -0 .99 0 
S 0.57 0.41 0.10 0.99 0 0 0 
P -0 .21 0.99 0.04 0 1.00 0 0 

Bx is seen in factor 2. Note, however, the B4 and Es are 
also related. The most interesting result is the observation 
that MR is related to each of the Sterimol parameters. On 
the basis of these results it looked as if, for preliminary 
investigations at least, MR might be a good compromise 
steric parameter. 

However, because MR is essentially a measure of dis­
persion bonding, it was important to verify in a larger set 
of substituents that •K and MR are orthogonal and the MR 
is a measure of steric effects only. Thus, we performed 
a factor analysis on those 71 substituents for which TT, MR, 
L, Bh and B4 are available. The results are shown in Table 
III. This analysis verified both points. 

Hence, our recommended set of parameters to be used 
to characterize a substituent is it, S, P, and MR. Table 
IV summarizes the factor analysis of 78 substituents for 
which these four parameters are available. The eigenvalues 
of the correlation matrix are 1.42,1.08, 0.89, and 0.61. The 
significance of each eigenvalue indicates four separate 
properties. The identification of each eigenvector with a 
parameter is confirmed by the factor pattern. 

If the series to be designed or evaluated is substituted 
in one position only and if a suitable <r value unambigu­
ously applies to the series, then one may choose to use that 
a value rather than S and P. Although the series opti­
mization may be done on MR, it would seem sensible to 
choose substituents for which Es or Sterimol parameters 
are also available since at later stages in the evaluation, of 
a series regression analysis using these variables may be 
desirable. 

(2) Number of Compounds to be Synthesized. The 
minimum number of compounds necessary in a series is 
governed by the number of properties to be examined and 
by the results of Topliss and Edwards.4 They studied the 
relationship between the number of analogues, the number 
of variables examined, and the possibility of chance but 
statistically significant correlations. For example, they 
showed that in order to investigate five variables it is 

.2 . < .6 s * 0 1.2 1.4 ;.6 

STANDARE DEVIATION OC PROPERT* 

Figure 1. A plot of the maximum R2 possible without overfitting 
the data vs. the standard deviation of the predictor variable. The 
curves are drawn for the following coefficients of the predictor 
variable in the regression equation (in order from left to right): 
4.0, 2.0, 1.0, 0.5, and 0.25. 

necessary to have 14 observations if the risk of a chance 
correlation is to be to less than 0.01. The similar figure 
for ten variables is 21 observations. Hence, the decision 
of the number of analogues to synthesize involves an 
assessment of one's willingness to accept the risk that an 
untrue relationship would be accepted as true vs. the risk 
that a true relationship would be discarded as a chance 
correlation. The weightings assigned to these risks, in turn, 
depend on the intended use of the information. 

It has been our experience that if a series contains 
sufficient variation in the properties of interest and if these 
properties are not highly correlated, then there are enough 
analogues that the risk of chance correlation is acceptably 
low. 

Measures of Suitability of a Series. (1) Variability 
in Physical Properties. One measure of variability in 
a property is its standard deviation. The question then 
is: "What standard deviation of a property is consistent 
with the reasonable likelihood that I will have varied that 
property sufficiently to see its effect on log potency?" For 
the case of log potency correlated with one property only, 
a tentative answer may be found by manipulation of the 
equation for R2, the fraction of the variance in the data 
which is explained by the correlation equation:6 

R2 =
 S S ^ = s „ > - 1) - s2(n - 2) = 

SSm e a n sm
2(n - 1) 

asp
2(n - 1) - s2(n - 2) 

asp
2(n - 1) 

in which SSmean is the sum of squares about the mean, SSreg 
is the sum of squares due to regression, n is the number 
of analogues, sr is the standard deviation of log potency 
from the regression line, sm is the standard deviation of 
log potency from the mean, sp is the standard deviation 
of the physical property in question from its mean, and 
a is the coefficient of the regression equation between log 
potency and the physical property. 

Figure 1 is a plot of R2 vs. sp when n = 10 and sT = 0.25. 
In the case in which all of the real variance in the data is 
fit by the equation, sr is equal to the standard deviation 
between replicate determinations of the log potency of the 
same compound; 0.25 has been selected as a typical value. 
Note that the lower the coefficient of a parameter in a 
regression equation, the larger the standard deviation 
required to reach the same R2. Although statistical sig­
nificance is reached at lower values, the usual rule of 
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Table V. Univariate Statistics of Properties in the Whole 
Set of Possible Substituents 

var mean ± SD 

Table VI. Means, Standard Deviations, and Squared 
Multiple Correlations of Physical Properties of a Set of 
Ten Analogues Chosen from Cluster Analysis 

L 

s, 
Bt 
MR 
£s 
•n 

V 
fl 
S 
P 
°m 

0 * 

89 
89 
89 

137 
44 
79 

125 
125 
125 
125 
125 
125 
125 

4.89 ± 1.47 
1.69 ± 0.32 

37.6 ± 1.59 
23.38 ± 13.36 
-0 .75 ± 1.20 

0.21 ± 1.10 
0.23 ± 0.22 

-0 .08 ± 0.26 
0.56 ± 0.45 

-0 .12 ± 0.97 
0.21 ± 0.25 
0.12 ± 0.38 
1.07 ± 1.06 

thumb for a useful equation is one for which R2 is at least 
0.80. On this basis, the standard deviation of a property 
must be approximately 0.75 if its coefficient in the re­
gression equation can be as low as 0.50. If the regression 
coefficient could be even lower and/or if a higher R2 is 
required, then an even larger standard deviation of the 
property will be necessary. 

Table V lists the mean and standard deviation of typical 
variables used in quantitative structure-activity analysis. 
Note that in the whole data set the standard deviation of 
(Tm is 0.25 and that of ap is 0.38. This suggests that it may 
be difficult to design a series with sufficient variation in 
electronic properties if only monosubstituted analogues 
are considered. 

(2) Independence of Physical Properties. It is 
suggested that factor analysis of the physical property 
corrrelation matrix of the proposed series be used to 
determine the independence of the physical properties. 
The first clues to a lack of independence are small ei­
genvalues and large squared multiple correlations. 
Identification of the problem relationships may be ac­
complished by examination of the rotated factor pattern. 
(Factor analysis is described further in the Appendix.) 

(3) Uniqueness of Each Compound. A series designed 
with efficiency in mind contains no analogues of essentially 
duplicate properties. The appropriate measure of du­
plication is the distance between analogues in property 
space. In the absence of compelling arguments for other 
measures, we have chosen to measure this distance by the 
Euclidean distance in standardized variable space. This 
is simply the square root of the sum of the squares of the 
distance between two analogues in each dimension. Each 
variable was standardized by subtracting the mean and 
dividing by the appropriate standard deviation listed in 
Table V. The distance was calculated with the BMDP2M 
cluster analysis program.11 

The Euclidean distance is easily visualized and has the 
advantage that the distance between analogues which are 
different in only one dimension is not exaggerated. 
However, it is dependent on the number of dimensions. 
For example, a difference of 0.5 (standard deviation) unit 
in each of two dimensions yields a distance of (0.52 + 
0.52)1/2 = 0.71, whereas in three dimensions the distance 
is (0.52 + 0.52 + 0.52)1/2 = 0.87 and in four dimensions it 
is 1.00. The discussions of distance in this paper will use 
the criterion of a distance of 0.5 standard deviations in each 
direction as the cutoff between close and distant. 

Examples: Evaluation of Selected Series 
Examples of the use of factor and cluster analysis to 

evaluate series follow. The variables chosen in some 
examples are based on those used in the source of in­
formation. 

var 

w 
S 
P 
MR 

mean 

0.59 
0.31 
0.16 

20.65 

SD 

1.26 
0.75 
1.52 

12.74 

sq 
mult 

correlat 

0.47 
0.38 
0.38 
0.44 

Series Chosen from Cluster Analysis. Hansch, 
Unger, and Forsythe1 were the first workers to apply 
multidimensional mathematical techniques to the design 
of series of analogues. They used cluster analysis to group 
known substituents into groups of similar substituents. To 
design an optimal series one would select one analogue 
from each cluster. The first series to be discussed in this 
report is one chosen from their cluster analyses. Sub­
stituents were chosen from the reported clusters based on 
?r, MR, 3, and Jl. One substituent was chosen from each 
cluster: for multimembered clusters the middle member 
was chosen. The substituents are CH=CH2 , OCF3, 
SCOMe, NHCONH2, NHBu, OS02Ph, S02Ph, adamantyl, 
OH, and CH=CHCOOH. 

The mean, standard deviation, and squared multiple 
correlation of the x, MR, S, and P values for this set are 
listed in Table VI. It can be seen that for all variables 
the standard deviation is larger than that in the whole data 
set and the squared multiple correlation is relatively small. 
The eigenvalues of the correlation matrix are 1.95, 1.22, 
0.57, and 0.26. There are no pairs of substituents closer 
in standardized Euclidean distance than 1.0; each analogue 
is unique. Hence, the cluster analysis has allowed the 
selection of a set of substituents which span the parameter 
space in a relatively uncorrelated manner. Because only 
monosubstituted analogues are considered, it is possible 
that there is too little variation in S and P. Additionally, 
the assymetric values of the eigenvalues suggests that there 
is some remaining correlation between variables. In 
practice, one would usually use a sample size of 12-16 
analogues to explore four properties. The added analogues 
should be selected to reduce the correlation between w and 
MR and that between S and P. 

Analogues Designed by Multidimensional Non­
linear Mapping. Goodford et al. have reported on an 
interactive computer program which is used by the syn­
thetic chemist to choose analogues for a series. The basis 
for selection of analogues is distance in multidimensional 
space and synthetic ease. Possible substituents for a 
phenyl ring are chosen from a data base within the pro­
gram. The program was used by them to design a set of 
analogues of methoxychlor.12 They also synthesized a 

pcH3 

methoxychlor 

second set of analogues because they were easy to make. 
Table VII lists the mean, standard deviation, and 

squared multiple correlation for the variables on which 
their optimization was performed. These variables are •K, 
summed 5* and Ji values weighted by position, MR of the 
ortho position (MR0), and the sum of the MR of the meta 
and para positions (MRmp). Note that the computer-
designed set has a larger standard deviation for each of 
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Table VII. Means, Standard Deviations, and Squared 
Multiple Correlations of Physical Propert ies of Two Sets 
of Methoxychlor Analogues 

SD 

sq 
mult 

correlat 

A. compute r designed series (n : 
77 1.25 1.66 
7 0.66 0.57 
fi - 0 . 4 1 0.30 
MR„ 7.22 7.62 

12) 

MR mp 13.98 12.52 

0.95 
0.68 
0.54 
0.84 
0.91 

B. easy to synthesize analogues (n = 9) 
rr 0.57 0.52 0.70 
3 0.34 0.31 0.26 
7? - 0 . 2 3 0.21 0.74 
MR 0 0.72 2.17 0.65 
M R m n 6.89 5.38 0.83 

Table VIII. Rota ted Factor Pat tern of 
Methoxychlor Analogues 

var 

77 

« 
M R 0 

M R m p 

77 

J 

M R 0 

M R r a p 

factor 

1 2 3 

A. compute r designed series 
0.78 0.36 - 0 . 4 2 
0 0 0.97 
0 0 0 
0 0.94 0 
0.95 0 0 

B. easy to synthesize series 
0.95 0 - 0 . 3 0 
0 0 0 
0 0.93 0 

- 0 . 4 1 0 0.90 
0.64 - 0 . 6 4 - 0 . 3 8 

4 

- 0 . 2 7 
0 
0.99 
0 
0 

0 
0.98 
0 
0 
0 

the variables but a much higher degree of colinearity than 
that of the easy to make set. 

The eigenvalues of the correlation matrix of the com­
puter-designed series are 2.21, 1.22, 1.09, 0.46, and 0.03; 
those of the easy to make set are 2.24,1.71, 0.69, 0.26, and 
0.09. In both cases, only four of the five eigenvalues are 
significant by any criterion. 

The rotated factor patterns of the four factors of the two 
series are shown in Table VIII. In the computer-designed 
series, -rr is a linear function of all of the other variables; 
in the easy to make series, MRmp is a function of x, CR, and 
MR0. 

In the computer-designed series there is one pair of close 
analogues; in the easy to make series, there are four such 
pairs. 

It may be concluded that the multidimensional non­
linear mapping method, apparently because of the 
provision to delete hard to make analogues, may result in 
a series with too high a degree of multicolinearity. The 
authors themselves were aware of this problem. 

Topliss Manual Method. Topliss has suggested that 
a useful strategy for the selection of substituents to op­
timize a lead is to first prepare the following specific set 

of five analogues: unsubstituted, 4-C1, 3,4-Cl2, 4-CH3, 
4-OCH3. They are considered to usually be easy to syn­
thesize. The substituents for the second small set of 
analogues are then selected on the basis of the apparent 
relationships between potency and physical properties 
which were revealed in the first set of analogues.3 These 
relationships are considered to be suggestive only and not 
to form the basis of conclusions. 

The various suggested sets (consisting of the original set 
plus, in turn, sets 2-8 of Table III in ref 3) were evaluated 
by factor and cluster analysis. The mean and standard 
deviation of the physical properties in each set are listed 
in Table IX. The TT and a are as given in the reference; 
MR values for the various positions have been used as 
steric parameters. It can be seen that in every case the 
standard deviation of at least one of the variables is less 
than ideal. 

The squared multiple correlations of the variables are 
listed in Table X. The physical properties of several of 
the sets of analogues show a rather high multicolinearity. 

The cluster analysis reveals that the initial set of five 
analogues contains two pairs with a distance of less than 
1.0 standard deviation in standardized multidimensional 
space. This suggests that the initial set of five analogues 
does not contain as much variability in the four parameters 
as is theoretically possible. Since the follow-up set of 
analogues was designed to exploit relationships suggested 
by the original set, it is not surprising that every secondary 
set of analogues contains analogues which are close in 
multidimensional space to either one of the original five 
analogues or to another member of the same secondary set. 
The numbers of close analogues are listed in Table XL 

From this evaluation it may be concluded that, although 
the sets proposed by Topliss may be useful for their in­
tended purpose, they are not ideal from the viewpoint of 
an uncorrelated spanning of substituent space in the 
minimum number of compounds. 

Erythromycin Esters. This example was chosen to 
illustrate the contrast between a series with a high degree 
of colinearity and the same series augmented with addi­
tional analogues which eliminate this problem. Regression 
analysis and some aspects of the analysis of the design of 
this series have been discussed in a preliminary way 
previously.6 The data are also listed in that source. 

The first set consists of only those analogues in which 
one of the hydroxyl groups of erythromycin (structure II) 

C H 3 0 C h 2 

erythromycin 

Table IX. Means and Standard Deviations of Physical Propert ies in Series Proposed by Topliss 

set MR4 MR, MR, 

0.50 
1.06 
1.08 
0.42 
0.78 
0.55 
0.43 
0.41 

0.53 
0.81 
0.72 
0.81 
0.44 
0.47 
0.44 
0.96 

0.06 
0.27 
0.16 
0.30 
0.04 
0.16 
0.02 
0.26 

0.32 
0.46 
0.35 
0.41 
0.29 
0 .33 
0.27 
0.34 

5.32 + 
9.08 ± 

13.19 ± 
10.32 -

7.29 ± 
2.98 i 
3.41 z 
8.83 i 

2.55 
7.85 
9.94 
7.97 
5.45 
2.76 
2.89 
5.13 

2.03 ± 
2.21 z 
1.90 z 
1.83 ± 
2.69 ± 
5.67 ± 
1.58 ± 
1.41 ± 

2.24 
2.04 
1.95 
1.87 
2.31 
4 .80 
1.67 
1.39 

2.84 1 2.82 
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Table X. Squared Multiple Correlations of 
Properties in Table IX 

set MR. MR, MR, 

1 
2 
3 
4 
5 
6 
7 
8 

0.82 
0.71 
0.84 
0.91 
0.73 
0.74 
0.75 
0.74 

0.84 
0.59 
0.66 
0.90 
0.46 
0.75 
0.78 
0.32 

0.40 
0.75 
0.90 
0.94 
0.67 
0.46 
0.59 
0.56 

0.70 
0.51 
0.42 
0.31 
0.66 
0.36 
0.59 
0.51 

0.57 

Table XI. Pairs of Close Analogues0 in the Sets 
Proposed by Topliss 

set 
no. of 

analogues 

pairs of 
close 

analogues 

5 
11 
11 
12 
11 
11 

9 
13 

0 Close is defined to be a distance of <1.00 in standard­
ized Euclidean space. The two pairs of close analogues in 
set 1 are not included in the numbers listed for sets 2-8. 

Table XII. Comparisons of the Mean, Standard Deviation, 
and Squared Multiple Correlation of the Physical 
Properties of Two Sets of Erythromycin Analogues 

SD 

sq 
mult 

correlat 

\ogP 
ESa 
ESu 
A 

logP 
Es<, 
Esn 
A 

A. series 
3.14 

-0 .34 
-0 .20 

0.28 

of alkyl esters 

B. total 
3.00 

-0 .29 
-0 .10 

0.43 

0.36 
0.29 
0.30 
0.46 

series 
0.62 
0.32 
0.22 
0.50 

0.83 
0.48 
0.48 
0.68 

0.28 
0.08 
0.15 
0.36 

A or B is changed into an alkyl ester. It was one of the 
first series synthesized in the erythromycin-modification 
program at Abbott. Esterification was at either the 2'-
hydroxyl, the 4'-hydroxyl, or the 11-hydroxyl; erythromycin 
A and B differ in the presence of the hydroxyl group at 
position 12. This set contains 28 compounds, which al­
lowed the examination of seven variables {w2, Ei2, *i, Esi, 
irn, Esn, A vs. B). If carefully chosen it could have also 
provided information on a* for each position of esterifi­
cation. This would be ten variables for 28 analogues. The 
analysis here will consider those variables which were 
ultimately shown by regression analysis to be important 
determinants of relative potency. These important var­
iables are log P, Es4, £ 9 l l , and the indicator variable A, 
which is equal to 1.0 if the compound is an erythromycin 
A analogue and 0.0 if it is an erythromycin B analogue. 

The means and standard deviations of the physical 
properties in this data set are tabulated in the upper part 
of Table XII. The standard deviation of all physical 
properties is substantially lower than ideal. 

The correlation matrix for this data set is shown in the 
upper part of Table XIII. There is no doubt that this 
series contains some correlation between variables. The 

Table XIII. Correlation Matrices for Two Sets of 
Erythromycin Analogues 

logP E«. Ea 

A. series of alkyl esters 

1.00 
0.45 

1.00 
0.37 

logi3 

ES4 

ESu 
A 

logP 
ESi 
Esu 
A 

1.00 
-0 .48 
-0 .65 
-0 .75 

B. 
1.00 
0.05 

-0 .28 
-0 .50 

1.00 
-0 .16 
-0 .10 

total series 

1.00 
0.04 
0.22 

1.00 

1.00 

Table XIV. Rotated Factor Pattern for Two Sets of 
Erythromycin Analogues 

factor 

var 

logP 
Es< 
ESn 
A 

logP 
<^S4 

•^sn 
A 

1 

A. 
-0 .722 

0 
0.257 
0.969 

0 
0 
0.978 
0 

2 

series of alkyl 
-0 .472 

0 
0.961 
0 

3 

esters 
-0 .441 

0.989 
0 
0 

B. total series 
0.960 
0 
0 

-0 .261 

0 
0.993 
0 
0 

4 

-0 .244 
0 
0 
0.938 

Table XV. Means, Standard Deviations, and Squared 
Multiple Correlation of the Physical Properties of a Set 
of Pargyline Analogues 

var SD 

sq 
mult 

correlat 

MR, 
MR3 
MR4 

S2 
S3 

s 4 
Pi 
p> 
p, 

2.89 
2.41 
6.22 
0.14 
0.06 
0.30 
0.24 
0.19 
0.27 
0.20 
0.18 
0.04 

3.21 
2.39 
7.55 
0.41 
0.27 
0.65 
0.39 
0.34 
0.38 
0.41 
0.42 
1.75 

0.94 
0.97 
0.83 
0.82 
0.85 
0.80 
0.67 
0.88 
0.47 
0.94 
0.96 
0.88 

question may be: How serious is this intercorrelation since 
the largest value corresponds to an R2 of 0.61? The answer 
to this is found in Table XII; the squared multiple cor­
relation of log P with the other three variables is 0.82. This 
high value clearly indicates a lack of independence of log 
P as a physical property. The eigenvalues of the corre­
lation matrix also tell a similar story: they are 2.33, 0.996, 
0.564, and 0.107. In practice, since log P is so strongly 
correlated with potency it was very difficult to decide by 
regression analysis if the steric terms and indicator variable 
are also important determinants of potency. 

The rotated factor pat tern is shown in the upper part 
of Table XIV. It shows very clearly the interrelationships 
between log P and Esll and A. This pattern suggests that 
new analogues should be synthesized to reduce the cor­
relation between log P and A and EsU. Since the standard 
deviation of log P is rather low, it seems reasonable to 
include analogues of relatively lower log P in the enlarged 
data set. 

The total set of analogues numbers 60. It includes 
derivatives of the ketone, the alkyl esters of the original 
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Table XVI. Correlation Matrix for Pargyline Data 
var 

M R , 
MR3 

MR, 
^ 2 
71 i 

•n. 

S-

s3 s4 
P, 
P> 
P, 

MR2 

1.00 
- 0 . 3 5 
- 0 . 2 9 

0.34 
- 0 . 1 4 
- 0 . 2 2 

0.74 
0.33 

- -0.14 
- 0 . 8 6 

0.27 
- 0 . 0 8 

MR, 

1.00 
- 0 . 2 2 
- 0 . 2 1 

0.50 
- 0 . 2 0 
-0.38 
0.82 

- 0 . 0 0 
0.29 

- 0 . 6 6 
0.05 

M R , 

1.00 
-0.22 

- 0 . 0 9 
0.84 

- 0 . 3 1 
- 0 . 2 0 

0.45 
0.23 
0.20 

- 0 . 2 3 

^ 2 

1.00 
•0.08 

- 0.08 
0.46 

- 0.20 
- 0 . 1 2 

0.12 
0.16 
0.00 

7T3 

1.00 
0.04 

- 0 . 1 4 
0.36 
0.14 
0.11 
0.17 

- 0 . 3 8 

" 4 

1.00 
- 0 . 2 0 
-0.19 
0.43 
0.23 
0.20 

- 0 . 1 0 

S2 

1.00 
- 0 . 3 6 
- 0 . 1 0 
- 0 . 5 9 

0.29 
- 0 . 0 7 

s3 

1.00 
0.00 
0.28 

- 0 . 4 0 
0.20 

s4 

1.00 
0.13 
0.10 

- 0 . 3 0 

P, 

1.00 
- 0 . 2 3 

0.09 

P, 

1.00 
- 0 . 6 0 

P. 

1.00 

set, more varied types of esters, and several miscellaneous 
compounds. The structures of the compounds are listed 
in reference 6. Note in the bottom of Table XII that the 
standard deviation of log P is increased substantially. 
Additionally, the correlations between log P and the other 
physical properties are decreased (Table XIII). The ei­
genvalues of this correlation matrix are 1.80,1.04,0.73, and 
0.42. The factor analysis for the total data set confirms 
that a slight relationship between log P and A remains, 
but the squared multiple correlations listed in Table XII 
show that this is not a large colinearity. Regression 
analysis of this data set was much less ambiguous than that 
of the alkyl esters alone.6 

This example has shown the contrast between the factor 
analysis of a poorly designed and a more satisfactory data 
set. 

Pargylines. This data was chosen as an example 

because it is a data set for which it has been very difficult 
to find a satisfactory regression equation.13 The means, 
standard deviations, and squared multiple correlations are 
listed in Table XV. For only 2 of the 12 physical 
properties considered is the squared multiple correlation 
less than 0.80. This is in spite of the fact that only three 
pairwise correlations are >0.80 and none are >0.90 (Table 
XVI). 

The last two examples suggest that one of the reasons 
that it may appear impossible to derive a regression 
equation for a data set may be that the physical properties 
are not independent. 

Discussion 
This work was initiated in response to comments of 

synthetic chemists that often it is impossible to synthesize 
any member of certain published1 or internally generated 
clusters. This lack of attention to synthetic feasibility 
(proposed criterion 4) is one shortcoming of the cluster 
analysis approach to series design. A second shortcoming 
is the lack of attention to proposed criterion 2, sufficient 
variation in all properties. As noted above, this could result 
in too little variation in electronic properties. 

In order to overcome the problem of synthetic difficulty, 
one may choose to do a customized cluster analysis on all 
the analogues which are synthetically feasible. Of course, 
this may involve a lot of work finding parameter values 
for compounds of which only a few will be synthesized. 
Additionally, it has been our experience that such a 
customized analysis often leads to series which contain too 
little variance and too high a degree of multicolinearity. 
Apparently, implicit in a synthetic chemists initial defi­

nition of easy to make is the assumption that the same 
reaction sequence will be used for all analogues; hence, only 
chemically similar analogues will be included. However, 
once attention is focused on the type of analogues required, 
alternate synthetic pathways may be perceived. 

The multidimensional nonlinear mapping strategy solves 
the synthetic feasibility problem, but in so doing it may 
produce series with a high degree of multicolinearity. 
Although this approach considers the possibility of 
multiple substituents, explicit attention is not paid to the 
criterion of sufficient variability in key properties. In the 
examples published, the data base from which the sub­
stituents are chosen is restricted to substituents on aro­
matic rings. Finally, this program is not generally 
available. 

The Topliss strategy was designed for other purposes, 
but if it is followed one will not have explored all of 
substituent space in an uncorrelated manner and some of 
the analogues will provide only redundant information. 
Hence, the full potential of the series will not have been 
explored. Additionally, it is even more rigid than the 
others with respect to the choice of analogues for synthesis. 

The strategy proposed in this report results in a com­
promise series which meets all criteria satisfactorily. In 
particular, because of the early and frequent input of the 
synthetic chemist, synthetic feasibility is a key element in 
all decisions. A second strength of the approach is that 
attention is paid to the variability criterion with the result 
that multiply substituted analogues will be included when 
necessary. As was noted in the introduction, the proposed 
criteria can be applied to any molecular descriptors of 
interest. This is conveniently accomplished because no 
standard data base is used; rather, each series is analyzed 
by readily available BMDP programs. For the same reason, 
the strategy is not restricted to phenyl substituents only 
but can be as easily applied to any proposed series. 

Appendix. Description of Factor Analysis 
Factor or principal-component analysis is a mathe­

matical method which is used to study the relationships 
between several properties which are associated with a 
series of observations. 14~16 In the subject of this report, 
factor analysis has been used to study the relationships 
(or lack of) between the physical properties of a set of 
substituents. The mathematical details are available 
elsewhere;14 what follows is a discussion of the meaning 
of the various results of the calculations. 

The first step in the calculation of the factors is the 
calculation of the correlation matrix. This matrix describes 
the degree of relationship between variables taken two at 
a time. For example, the correlation matrix for the factors 
in Table XIV is shown in Table XIII. Each entry is the 
correlation coefficient, r, between two variables. R2 is the 
fraction of the variance in one property which may be 
explained by the variation in the other. For example, in 
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the series of alkyl esters 48% of the variation in £s4 may 
be explained by concurrent variation in log P; in the total 
series this value is reduced to 5%. 

Although the correlation matrix is useful, it does not give 
a complete picture of the relationships between properties, 
because one property may be a linear function of more 
than one other property. Examination of the eigenvalues 
of the correlation matrix provides information on the 
number of truly independent variables. Every square 
matrix, including a correlation matrix, has an associated 
set of eigenvalues X and eigenvectors. There are as many 
eigenvalues as there are variables in the data set. The sum 
of the eigenvalues is equal to the sum of the elements of 
the principal diagonal: for a correlation matrix this is equal 
to the number of variables. The eigenvalues are extracted 
in such a way that the first is the largest, etc. The pro­
portion of the total variance in the data which is explained 
by a particular eigenvalue i is equal to the value of that 
eigenvalue divided by the sum of all the eigenvalues. 

\ 

T.\ 
Thus, if one variable is a linear combination of two other 
variables, two rather than three significant eigenvalues 
would be associated with these properties. For example, 
in the analysis of the electronic properties <rm, <rp, 5?, Ji, 
S and P, only two of the six eigenvalues were nonzero. In 
chemical terms, there are only two electronic properties 
of substituents, field and resonance. 

The determinant of a matrix is equal to the product of 
the eigenvalues. Hence, if the objective of a series design 
is to maximize the independence of the properties, then 
the determinant is also maximized. 

Each eigenvalue has associated with it an eigenvector. 
This eigenvector consists of the coefficients of the con­
tribution of each of the original variables to the eigenvalue. 

Principal components are simply calculated from the 
eigenvectors as the product of the eigenvector and the 
square root of the corresponding eigenvalue. The principal 
components are also known as the unrotated factor pat­
tern. 

For further calculations one must choose how many 
factors are to be used. The choice depends on the values 
of the eigenvalues and the use to which the data will be 
put.14 Since our objective is to look for unwanted rela­
tionships between physical properties, we decided that one 
measure of independence would be the number of ei­
genvalues necessary to explain 95% of the variance in the 
data. Factor analysis using this number of eigenvalues 
reveals if the properties are independent. If they are not, 

the relationship is highlighted by the rotated factor 
pattern. 

Rotation of the factor pattern is performed to maximize 
the number of high and low loadings of variables on factors. 
Several methods are available; the varimax method was 
used in these examples. 

The rotated factor pattern describes the relationships 
between the factors and the properties and, hence, between 
the properties also. A data set in which all properties are 
independent will have a factor pattern with as many 
factors as variables. Each variable will load on one factor 
only. An example is Table IV. On the other hand, highly 
related variables load similarly on all factors. For example, 
in Table I ft and P and, to a somewhat lesser degree, 7 
and S show a relationship. 

The factor analyses described in this report were cal­
culated with the BMDP4M program.11 The initial factors 
were extracted by the principal-axis method and rotations 
were performed by the varimax method. Communalities 
were assumed to be 1.0. 
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